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Further examples are given of a fmite difference scheme which was introduced in a 
previous paper. The aim of these examples is to show the possibility of practical applica- 
tions. The accuracy obtainable is demonstrated by the solution of a linear equation. 
The vortex behind a barrier and a physical instability case (Helmholtx instability) are 
computed to show the nonlinear stability of the scheme. 

1. INTRODUCTION 

In a previous paper [l] a finite difference scheme for accurately solving partial 
differential equations was introduced. The accuracy achieved was associated 
with the degree parameter of the method. In [I] the presentation was confined 
to the tirst and second degree cases and to one space dimension. Now, more 
general examples are given. 

The aim of these examples is to show the possibility of practical applications. 
From this point of view the pth degree method has two advantages: 

(a) For a given scale, any desired accuracy can be achieved with a reasonable 
computational effort. 

(b) Nonlinear stability is maintained with a moderate damping of the 
larger scales. 

To support (a) the linear analysis of the third degree method will be given. It 
reveals a further increase of accuracy compared with the second degree method. 

The effect of nonlinear instability is physically related to the fact that a phenom- 
enon can change its scale during time development. This poses a hard test for a 
finite difference scheme, when the waves that arise cannot be represented in the 
grid. A finite difference scheme must not necessarily fail to give reasonable results 
under these circumstances. An example is the pseudoviscosity method of computing 
shocks [3]. The idea is to smooth the shock to a scale which can be represented by 
the grid. In the same way, the second degree method disposes of short waves. 
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The difference of the modes with small and heavy damping is very marked for 
the second degree method, and still more marked for the third degree method. 

For computations in two space dimensions, physical situations were selected 
which require schemes with good nonlinear stability properties. 

To avoid unnecessary complications in presentation, no attempt was made to 
describe a fairly general case of the method. Instead, specific examples in one and 
two space dimensions are given. Some care is taken to describe the mathematical 
ideas involved. Further generalizations should now be straightforward. These 
generalizations may concern the following points. 

(a) The definition of the method for arbitrary degree and space dimension, 

(b) the choice of other spatial smoothing operations, 

(c) the definition of an implicit or semi-implicit version of the pth degree 
method. 

The investigation of(b) seems especially interesting since numerical experiments 
have shown that the choice of the spatial smoothing operation has an essential 
influence on the Courant-Levy timestep and other features of the resulting scheme. 
It does not seem likely that the operation described in this paper is the best choice 
for all possible applications. 

The formalism is given in Section 2. Section 3 describes numerical computations 
which demonstrate the accuracy and nonlinear stability of the schemes. 

2. DEFINITIONS 

One Space Dimension 

Equations of the form 

(E@t)r = F(r, Dr) (1) 

are considered, where D is a spatial differential operator of order smaller than 4. 
As in [l] we will use the grid XV with dX = XV+, - XV and the shifted grid 

X,,’ = (XV+, + X,)/2. For the definition of the third degree scheme the function 
spaces S, , P, , S,‘, P3’ will be used. At a fixed time level t the fields will be given 
as functions belonging to S, or S,’ in the original and the shifted grid, respectively. 
Functions from P3 or P,’ will occur when the time translation operator is applied 
to functions from S, or S,‘, respectively. For simplicity the definition of these 
spaces will be given for the periodic boundary case with periodicity length LAX. 
All series CII, used in the future are required to be periodic: 



SECOND AND THIRD DEGREE METHODS 297 

For the detkition of a function #X) E S, the constants 4” , $V+(llz),xz , ~$~+u,~),~~ 
must be given. These constants correspond to gridpoint values of C/J and second 
and third spatial derivatives at intermediate points. 

For XE [XV , XV+,] C+(X) is defined by 

$<4 = N&+1 + w9 + ((A+1 - +“Mm * (X - X+(1,2)) 

+ ~“+(112Lx2hw - ~v+(llZ)) + +“+(1/2),x&(~ - xv+(1/2)) (2) 

with&(Y) = ( Y2 - dX2/4)/2 and f3( Y) = ( Y/3)f2( Y). 
For the definition of a function C$ E P3 let the coefficients ~V+(I12~,0 ; $V+(,,2,,, ; 

4v+(1,2LXX ; ~"+(ll2Lxxx be given. They are the coefficients of a spatial Taylor 
series of $. For XE [XV , XV+,] q(X) is defined by 

B(X) = hJ+(llz),o + &+(1,2),x@- - X+(1,2)) 

+ A+(uz),xx(~ - xv+(1/2)12/2 + Bv+(l12),dx - xv+(l12)Y/6- (3) 

The functions 4’(X) E &’ and q(X) E P,' are defined by applying shifting 
operations to functions d(X) E S, or B(X) E P3 , respectively: 

9’(X) = 4(X + W2), $(A-) = &x+ LlX/2). 

The spaces S, and S,’ consist of continuous functions, while the elements of P, 
and P3' may have discontinuities at XV or XV’, respectively. 

The time translation operator T,,, is defined on the space BA . B, consists of 
all functions #(X) which are analytic on the interval [0, L&J, except possibly at 
a finite number of points, and satisfy the periodicity condition 

Tdt is defined by 

for the pth degree case. The equation of motion, Eq. (l), determines all coefficients 
#WX) if we assume that the left-hand side of Eq. (4) with p = co is a solution. 

As in [l], spatial smoothing operations Q, Q’ will be needed which map P, to 
S,l and P3' to S, , respectively. For the definition of Q let a function C$ E Pa be 
given, with co~evonding constants &+(l12~.o ; $v+(l12~,~ ; ~v+(l~2~.~~ ; d;y+(l~2~,~~~ . 
The constants ~~+~1,2~ ; Kx2 ; Kx3 defining the function Qc$ = 4’ E S,l are 
determined by the equations 
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The parameter f is used to control the implicit spatial smoothing of the method. 
In the following the value .$ = 1.1 will be used. In Eqs. (5), 1) Ill,V and 11 Ilz,V are 
norms defined on a space containing S,’ and P,‘. 

In the following we will use the norms 

From Eqs. (5) we get the following formula for &!x2 and &,x3. 

+:.x2 = G(~"+(llz).x - f$v-(1,2),X) + C2(~"+(l,2).xx + ~"-(lIP).xx) 

+ Gk5"+(1,2mx - $;"-~1,2).xxx)~ 
(6) 

5 - &:,x2 = w?"+(1/2hl - $"-(ll2d + Dd~"+(ll2Lx + ~v-(ll2).x) 

+ D2(~"+(1/2Lxx - ~"-(ll2).xx) + 4(~"+(ll2)*xxx + ~"-~II%).xxx)3 

with 

C, = 1.5625; C, = -0.28125; C, = 0.03645833; 

Do = -8.63340304; D, = 4.31670152; D, = 0.22587392; 

D, = 0.02733791 for AX = 1. 

Two Space Dimensions 

The equation of motion is again Eq. (l), but r is now a function of X and Y. 
The grid (XV, Y,) and the shifted grid (X,,‘, Y,‘) = (XV+(I12) , YU+tI12)) will be 

used. The notation will be the same as that used in the one-dimensional case. 
Only the periodic boundary case will be described, which means that all series 
01,,, satisfy the requirement 

~,+L,u = ~".!A = a".u+L. 

Since we are dealing only with degree parameters 2 and 3, continuous fields 
are described by associating constants with the edges and sides of a grid square 
(xv y YJ, K+l , YJ, K+l , Yw+J, (xv y Y,+d or GC+hi2) , Yu+(l~2h (X+(,,,) , 
Y u+(~~d, (&+(w~) , Yu+(312))9 (xv+(~12) , Y,+w~)) in the shifted grid. 
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To define a function qV, Y) ~4 let the constants qL ; q$4(1~2),,,.~2 ; 4v+(112~.u,~3 ; 
4 v,u+(l/Z).Y2 ; fA.u+(112LY3 be given. For X E [XV , XV+,] and YE [Y,, , Y,,,] we define 

+ (~"+(l/2Lp.x2f2w - JL+(llz)) + ~"fW2LLL.X3 

-f3(X - K+(1,2))) y"+jj; y 

+ (4"+(l,zLu+l.x2fi(~ - X+(1/2)) + ~v+(1/2h+l,X3 

Y- Y 
*h(X - X+(1/2))) * 

+ (L+w2)*Y2f2(Y - yP+(llz)) + L+(1/2LY3 

*f3(Y - Yw+(llZ)N "'+A; x 

+ (4"+l,u+(1/2),Y2f2(y - Yu+(l/,d + +"+Lrr+h/2).Y3 

*fdY - Yu+(llZ)N y - 

The space S,’ consists of all functions 

$‘<X, Y) = 4(X + m2, Y + W2) 

with q3 E S, . 4’ is associated with a set of constants 

4’ u+(ll2).~+(1/2) ; VJ' v.u+(1/2),X2 ; 4' v.o+(1/2).Xs ; 

+' v+(1/2).u.Y2 ; ~:+(1/2).&Y3 - 

(7) 

Figure 1 shows the definition of these constants in the grids. 
For the definition of a function $(X, Y) E P3 the constants I$,, , Bx, Jy, Byx, 

$YY, $XX , $YYY , $YYX , Byxx, $XXX must be given. The space index u + (l/2), 
p + (l/2) is dropped. For X E [XV , XV+& YE [Y, , Y,,], 4 is then defined by a 
spatial Taylor series 

~(~,r>=~~+-tx<~-~)+~Y(y-~ 

+ Bxxcx - m2/2 + JYY(Y - VP 

+ $YX(X -my - n + $YYX(X --my - T3”/2 

+ 4YXXW --Q" v - TV2 + $YYI@ - 37’/6 

+ d;xxx<X - -33V, (8) 
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$ h2 0 4Y2 

toxil 
. by3* 

492 9y3 * oy2 +y3 #x2 4x3-9 ' +X24X3 

A B 
FIG. 1. Field representation in the original (A) and the shifted grid (B). l , original gridpoints; 

o, shifted gridpoints; -, grid square of the original grid; - - - -, grid square of the shifted 
grid. 

with X = XV+(llz) and H = YU+(llz) . Functions $‘(X, Y) E P,' are defined by 

&(x, Y) = &Y+ 0x/2, r+ b-/2), $EPs. 

The spaces S, , S,l, P3, P,' are needed for the design of the third degree scheme. 
For the definition of the second degree scheme we will need the spaces S, , S,‘, 
P 29 P,'. The corresponding functions can be obtained by using Eqs. (7) 
with #v+(l~2),u.~3 = hM+w2).Y3 = 0 and Eqs. (8) with ~v+(112~,rr+(1~2~.~~~ = 
B v+(1/2).u+(1/2).YYY - - ~"+(l,2).u+h,2)*Yxx = ~"+(l12).u+(l,2).YYx = 0. 

The time translation operator Tdt will now be defined on the space BA which 
consists of functions #(X, Y). They are required to be periodic in the X and Y 
directions with periodicity length LAX, and analytic except possibly at a finite 
number of lines. It is defined by 

TA&X, Y) = yKf, I’> + i ~YX, Y)(Wn !) (9) 
t&=1 

for the pth degree case. The coefficients #(“) are again determined by # and Eq. (1). 
The spatial smoothing operations Q, Q’ are mappings P, -+ S,l and Pi -+ S, , 

respectively. Their definition can be reduced to the case of one space dimension. 
For the definition of Q, let a function 4(X, Y) E P, be given. Consider the function 

%+(1/2)W) = B<x Yu+(ll2)). 
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The application of the one space dimensional smoothing operation will define 
the constants 

The smoothing of the function OV+(Iiz)(Y) = &XV+(,,z) , Y) will give the constants 
4:+mu+(l/z) ; 6+(112Lu.Y2 ; ~:+(l/hm which are sufficient to define a function 
$‘(X, Y) E S,‘. Note that no ambiguity occurs for the definition of &+(112),L1+(112) . 

The spatial smoothing operations for the second degree case can be obtained 
by using Eqs. (6) with C, = D, = D, = D, = D, = 0. 

Blue Terms 

The definition of the time translation operator by Eqs. (4) and (9) requires a 
further simplification. Let a function $ from S, (p E {2,3}) be given. The functions 
t,P defined by Eq. (4) or Eq. (9) are developed into a spatial Taylor series 

p) = #bn) + #jl”‘(X - x”+(m)) + ... 
or (10) 

i+p) = Q) + &‘(X - x v+d + $wx - ~“+c~/d(y - y”+wz)) + *** 

for one or two space dimensions, respectively. 
Together with Eq. (4) or Eq. (9) one obtains a space-time Taylor series. The 

terms of higher than pth order will be called blue terms and are dropped in the 
following applications. For example, @’ is a blue term for the second degree 
method, while for the third degree method it must be considered. 

In one space dimension blue terms can only occur in the solution of nonlinear 
equations. 

In two space dimensions the solution of the linear advection equation 

with the second degree scheme contains the blue terms cj’$, $J:‘:, 4:; , $9’) #’ . 
A numerical experiment has shown that their neglection has no noticeable effect 
on the solution when dt is small compared to the Courant-Levy timestep. 

Computational Procedure 

If the function 4” ES, at time t is given, the double timestep can be defined by 

d t+zAt = Q’ o TAt o Q o TAtfit. 

Consider the mapping Q 0 TAt: S, - S,’ for the case p = 3 and one space 
dimension. Its computation is done in three steps. The spatial interpolation step 
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computes the spatial derivatives at XV+(llz) . From Eq. (2) we get the following 
interpolation formula (the time index t is dropped). 

~“+(1,2’.0 = <A+1 + 442 - 4v+(1/2)X2 AWfk 
6+(1,2’,x = (A+1 - ~AJ- - +v+(l12).X3 . 1124, 

&+(llz’,xx = +“+(1/2’.x2 > 

~“+(1/2’.xxx = 4”+(1/2’.x3 ’ 

(11) 

In the time translation step Eq. (4) is used to compute the fields at a later time 
level t + At. It is represented by a function @+At E P, . From Eqs. (4) and (9) 
we get 

@A” = c&,” + r$$‘*t At + +t’st At’/2 + +:‘*t At3/3, 

&+“’ = $x” + #‘At + ,p).t At72, 

$%x”” = 4:x + &?it At, 

-t+At 
4 &Lxx. xxx = 

(12) 

The space index v + (l/2) was dropped and the blue terms were neglected in 
Eqs. (12). 

The coefficients ~$a’*~, +a’~~, @‘*t, c$$‘*~, I$?‘*~, 4:;” are given for the case of the 
linear advection equation 

GWM = (wo$. (13) 

The space index v + (I/2) and the time index t will be dropped. 

(14) 

Finally, the spatial smoothing step is performed according to Eqs. (6). 
The neglect of the third order terms in Eqs. (6), (lo), (ll), (12), and (14) will 

give the computational procedure for the second degree case described in [l]. 
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The two dimensional examples will be given for the second degree method. 
In this case, the interpolation step computes the spatial derivatives 6, , $X, $r , 
$rX , &y , BXX at the center (Xy+(1,2) , YU+(& of a grid square. The blue terms 
&XX and &TX are neglected. The time translation is done by using the mixed 
derivatives #‘, +y’, #‘, 4;“‘. A detailed d escription of the computational proce- 
dure for this case was given in [2], where the implementation of other than periodic 
boundary conditions is also described. 

The Demand for Computation Time 

The program for the physical instability case given in Section 3 needed 1.8 set 
of computation time per time step on a CDC 3800. It may be interesting to see 
the demand of computation time required by the described methods in a nontrivial 
case. 

We consider baroclinic six-layer meteorological models which use actual data 
as initial conditions. The models use the primitive Navier-Stokes equations in 
three space dimensions on a stereographic grid. The vertical acceleration is 
neglected. Horizontal discretization is done by the second and third degree methods 
respectively. In the vertical, the centered difference approximation is used. A 
description of the third degree model and its results is given in [5]. The vertical 
structure of the models is identical with that of a DWD model which uses an 
Eliassen grid. The models differ only with respect to their horizontal discretization 
and the computation area, which is quasi-hemispheric for the Eliassen-grid model 
and covers Europe and the Atlantic for the other two models. All models use 
AX = 381 km. 

The third degree model needs approximately as much computation time as an 
Eliassen-grid model of equal area with grid length AX/2 would need. The transition 
from the third degree model to the second degree model reduces the computation 
time by one half. It should be remarked that the third degree model omits some 
of the third order terms. For example, the fields representing the stereographic 
mapping factor and the Coriolis parameter are given as function from S, instead 
of&. 

The third degree model is economically competitive for short range prediction 
models if one accepts that it has an increased resolution compared with AX-grid 
models. The effective grid length is dX’ = dX/3, because in addition to grid 
point values of the fields it uses second and third spatial derivatives as degrees 
of freedom. While some of the additional resolution of the second degree method 
is lost by the smoothing of the 2dX wave scale, it cannot be doubted that the 
third degree model actually has an increased resolution. 

A detailed discussion of the resolution of the third degree method is given in [5]. 
In this paper the distinction is made between static and dynamic resolution. The 
first is given by the smallest scale which fields constant with time may have. The 
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FIG. 2. The time development of the 2AX wave. (A) Second degree method. 
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second is given by the smallest scale which time dependant structures are allowed 
to have. 

There is always less dynamic resolution than static resolution. For example, 
a scheme with grid length dX can represent a function with a jump on the scale LIX. 
However, it is not possible to predict a shock of this sharpness. According to 
comparative shock calculations with different methods [6], 3dX seems to be a 
practical lower limit for the diameter of a shock. 

The static resolution of the third degree method is that of a method with grid 
length LIX’ = AX/3. A third degree polynomial on the interval [XV, XV+,] can 
equivalently be determined by prescribing 4” , c$~+(~,~) , +V+(2,3) , 4V+l instead of 
95 3 (a2Px2> ~v+(l,Z) 9 (a3Px3> &+(1/2) 7 A+1 * The dynamic resolution was deter- 
mined in [5] by considering the sharpness of a predicted shock in comparison with 
predictions of other methods given in [6]. It was concluded that the third degree 
method has also the dynamic resolution of a scheme with grid length AX’ = AX/3. 

The Eliassen scheme used for comparison is one of the simpler methods used 
in meteorology. The schemes used for general circulation models and extended 
forecasts are much more time consuming because of their conservation properties 
and other reasons [5]. 

3. COMPUTATIONAL EVIDENCE 

Linear Advection Equation 

Now we put AX = 1. The first example shows how the method uses its degrees 
of freedom to describe the field between the grid points. The linear advection 
equation (Eq. (13)) is solved by the third degree method with the initial condition 

6 = 6+(1/2),X3 = 0, 4v+(1/2).x2 = 4---l) 

with At = 0.1. Figure 2 shows the field for the first 10 timesteps as computed 
with the second and third degree methods. 

The initial condition represents the 2AX wave. The movement of this wave 
cannot be computed by methods which represent fields only by gridpoint values. 
This example shows that the transition to the second or third degree method 
produces an increase in resolution. 

To investigate the numerical accuracy of the third degree scheme, wave solutions 
of the linear advection equation were considered. The initial conditions were 
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After 2n timesteps the field is given by 

The matrix V and its eigenvalues h, , h, , h, were computed numerically. The 
Courant-Levy condition for the third degree method is dt < 0.22&K Figure 3 
shows the damping factors A”+‘/An and relative phase velocities C/C,, corre- 
sponding to the first eigenvalue h, . 

-c,dtt 
AX 

0.2- 

2 5 10 15 20 L/Ax 

1.0001 1.00001 

I 
I *  

2 5 10 15 
I 

20 L/Ax 

FIG. 3. Damping factors (above) and relative phase velocities (below) for 
method, corresponding to the first eigenvalue. 

the degree 

A comparison with [l] shows that the accuracy has improved considerably 
compared with the second degree method. The eigenvalues h, and h, represent 
modes with considerable damping. The damping factors are shown in Fig. 4. 

These eigenvalues reflect the damping of small scale structures. Figure 5 shows 
two examples of these subgrid structures together with the result of one timestep 
(dt = 0). The example below transforms the initial condition into a 2dX wave 
in only one timestep. 

To show the effect of the small damping and phase velocity error a computation 
with a positive initial condition was done. Periodic boundary conditions were 



308 J. STEPPELER 
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0.1 0.2 0.3 

0.1 - '\L 

I I I I I 
&At ” 2 5 10 15 20 L/Ax 
Ax 
0.2 - 

0.1 - 

I I I I I * 
2 5 10 15 20 L/Ax 

FIG. 4. The damping factors A*+l/A” corresponding to the third and second eigenvalues. 

FIG. 5. Examples of subgrid structures with considerable damping. N = 0, initial condition; 
N = 1, result of one timestep with At = 0. 

used with periodicity length 20&f and fl t = 0.1. Figure 6 shows the result of 
forecasts. Except for N = 2 the forecast time was chosen in such a way that the 
exact solution of Eq. (13) would give the same diagram as the initial condition. 



SECOND AND THIRD DEGREE METHODS 309 

N= 800 

N- 400 

N= 200 

N= 2 

N= 0,. , , , , , , , , , , , , , , , 

x[Ax] 15 10 5 

FIG. 6. Solution of the linear advection equation with positive initial values. N, number of 
timesteps; -----, second degree method; -, third degree method. 

Vortex behind a Barrier 

The nonlinear computations were done with the equations of a barotropic 
fluid: 

(a/at)u = -u(au/ax) - v(au/aY) - @H/ix), 

(apt)v = - u(avpx) - v(avjar) - (a~/ay), 

(a/at)H = -(a(Hu)/ax) - (a(Hv)/aY). 

(15) 

It is a fluid with a free surface of height H and only horizontal motion. 
The computation was done with the second degree method on a 31 x 31 point 

grid with LX = 381 km and At = l/12 hr. The distance between the opposing 
boundaries was 29d.K Periodic boundary conditions were used in X-direction, 
and for Y = Y, and Y = YZ physically rigid boundaries were introduced, At 
X = X0 = 100 a physically rigid barrier of length 9dX was introduced, which 
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was connected with one of the boundaries. The implementation of boundary 
conditions was done in the original grid. It was done two times, approaching 
the barrier from both sides. Correspondingly in the right grid the fields were double 
valued functions on the barrier. This reflects a jump discontinuity of the fields on 
this line. The initial values were 

U = U,,, = 190.5 km/hr, v = 0, H = 2.0 (381 km/hr)2. 

Figure 7 shows the velocity field after 21 hr. Figure 8 gives the total energy as a 
function of time. The dissipation first decreases and then increases again when the 
fully developed vortex reaches the barrier a second time. 

The equations of motion (Eqs. (15)) describe no production of vorticity. In this 
example the spatial smoothing operation in combination with the boundary 
condition resulted in a production of vorticity in a physically reasonable way. 

Physical Instability 

The example above and the shock wave computation given in [2] already 
demonstrate the nonlinear stability of the second degree scheme in two space 
dimensions. A further nonlinear stability test was done by the computation of a 
physical unstable case. 

------_._.- c _ .- . - .._ - - - - . . . . . - - - - = 

FIG. 7. The velocity field of the vortex behind a barrier at t = 21 hr. 
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1 
I I I I 1 *  

50 100 150 200 250 t[hI 

FIG. 8. The energy diagram of the vortex behind a barrier. 

In case of turbulent motion, nature makes excessive use of its infinite number 
of degrees of freedom. According to [3] this situation poses a hard test for a finite 
difference scheme. The spatial smoothing operation of the second degree scheme 
will transform some motions into a larger scale and damp out other scales. In 
this way it maintains nonlinear stability. 

The solution of the second degree method can be expected to be more stable 
than the exact solution. On the other hand, from the moderate damping of larger 
scales, one can expect that the computation actually represents the instability. 

The example uses the equations of the barotropic fluid (Eqs. (15)). The com- 
putation with the second degree method was done on a 31 x 31 grid with 
LIX = 381 km and dt = l/17 hr. The distance of the opposing walls was 29dX. 
Periodic boundary conditions were used in the X-direction and at Y = YI and 
Y = Yz we assume physically rigid boundaries. 

The initial values were 

H(X, Y) = 2.0 (381 km/hr)?-, 

V(Y,X) = 0, 

WY, m = f(Y), 

(16) 

with 
f(Y) = - 1060 km/hr for Y < 150X, 

0 for Y > 15d.X. (17) Z.Z. 

For every choice off(Y), Eqs. (16) give stationary solutions both of the differential 
equations (Eqs. (15)) and of the finite difference equations. 

There are, however, physical considerations [4] which show that the choice 
off(Y) given by Eqs. (17) produces a physically unstable boundary at Y = 15dX. 
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Linear theory also proves the instability of this boundary. The computation 
resulted in a stationary flow with f(Y) being submitted to the spatial smoothing 
operation. At T = 46 hr a small perturbation was introduced into the velocity 
field. Figure 9 shows the perturbed and unperturbed fields. During the computation 
the perturbation at first disappeared. At t = 99 hr small scale structures appeared 
in the H-field which were quickly increasing their amplitude. Figures 10 to 12 
show the H-field at different times. Figures 13 and 14 give the velocity field minus 
basis current and the velocity field at time t = 156 hr to show the irregularity of 
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FIG. 9. The unperturbed (A) and the perturbed (B) state at I = 46 hr (physical instability). 
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FIGS. 10-12. The H-field at t = 99 hr, t = 156 hr, and t = 456 hr (physical instability). 

FIGURE 10 

FIGURE 11 
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FIGURE 12 

FIG. 13. Velocity field minus basis current at t = 156 hr (physical instability). 
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FIG. 14. Velocity field at t = 156 hr (physical instability). 

FIG. 15. The velocity field minus the field U = 400 km/hr, V = 0 at time t = 1359 hr 
(physical instability). 
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FIG. 16. The H-field corresponding to Fig. 1.5. 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

............................... 

... ........................... 

............................... 

............................... 

............................... 

.................. _ . _ ........... _ - _ _ _ _ _ 
___________-____,l,,,- -.-..-..- 

FIG. 17. The second initial condition after the introduction of the perturbation at f  = 46 hr 
(physical instability). 
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FIG. 18. The velocity field minus the field U = 200 km/hr, V = 0 at time I = 473 hr for the 
computation with the second initial condition (physical instability). 

FIG. 19. The H-field corresponding to Fig. 18. 
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motion. The solution does not become numerically by unstable. The energy is 
decreasing and the total matter J H dX dY is conserved within 1%. 

This property of the second degree scheme might be interesting for the computa- 
tion of the large scale part of a flow with turbulent regions. 

After the small scale movement has disappeared, a wave of a larger scale develops 
very slowly. Figure 15 shows the velocity field minus the field U = 400 km/hr, 
V = 0 at time t = 1359 hr. Figure 16 gives the corresponding H-field. 

Another computation was done with a second initial condition representing a 
smaller tlow region. Figure 17 gives the field at time t = 46 hr after the introduction 
of the perturbation. 

The details of the resulting development are quite different compared with the 
result of the first initial condition. The small scale movement of the initial phase 
is very weak. The large scale wave develops more quickly and has a larger ampli- 
tude. Figure 18 shows the velocity field minus the field U = 200 km/hr, V = 0 
at time t = 473 hr. Figure 19 gives the corresponding H-field. The system of 
two vortices has quite a different shape compared with Fig. 16. The relation of 
the distances of the vortices in X- and Y-direction is, however, approximately the 
same in both cases. It is not very different from the value corresponding to a 
stable Karman vortex street [4]. 

When the computation was stopped, the development had not ended, although 
it was very slow. The energy was continuing to decrease at this time. 
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